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A single-cell transcriptomic atlas 
characterizes ageing tissues in the mouse

The Tabula Muris Consortium*

Ageing is characterized by a progressive loss of physiological integrity, leading to 
impaired function and increased vulnerability to death1. Despite rapid advances over 
recent years, many of the molecular and cellular processes that underlie the 
progressive loss of healthy physiology are poorly understood2. To gain a better insight 
into these processes, here we generate a single-cell transcriptomic atlas across the 
lifespan of Mus musculus that includes data from 23 tissues and organs. We found 
cell-speci!c changes occurring across multiple cell types and organs, as well as 
age-related changes in the cellular composition of di"erent organs. Using single-cell 
transcriptomic data, we assessed cell-type-speci!c manifestations of di"erent 
hallmarks of ageing—such as senescence3, genomic instability4 and changes in the 
immune system2. This transcriptomic atlas—which we denote Tabula Muris Senis, or 
‘Mouse Ageing Cell Atlas’—provides molecular information about how the most 
important hallmarks of ageing are re#ected in a broad range of tissues and cell types.

We performed single-cell RNA sequencing on more than 350,000 cells 
from male and female C57BL/6JN mice belonging to six age groups, 
ranging from 1 month (the equivalent of human early childhood) to 30 
months (the equivalent of a human centenarian) (Fig. 1a). For all mice, 
we prepared single-cell suspensions of the bladder, bone marrow, brain 
(cerebellum, cortex, hippocampus and striatum), fat (brown, gonadal, 
mesenteric and subcutaneous), heart and aorta, kidney, large intestine, 
limb muscle and diaphragm, liver, lung, mammary gland, pancreas, 
skin, spleen, thymus, tongue and trachea. Data were collected for all six 
age groups using a microfluidic droplet method (droplet); the 3-month, 
18-month and 24-month time points were also analysed using single 
cells sorted in microtitre well plates (fluorescence-activated cell sort-
ing; FACS) (Extended Data Figs. 1–3, Supplementary Tables 1, 2). Owing 
to technical constraints, not every tissue was analysed at all time points; 
a complete list is provided in Extended Data Fig. 4a. The droplet data 
enable large numbers of cells to be analysed using 3′ end counting, 
whereas the FACS data allow for higher-sensitivity measurements over 
smaller numbers of cells as well as enabling the acquisition of sequence 
information across the entire transcript length. The analysis of multiple 
organs from the same mouse enables us to obtain data that is controlled 
for age, environment and epigenetic effects.

Data from the 3-month time point—which has previously been 
published and constitutes the Tabula Muris5—represents approxi-
mately 20% of the cells in the entire dataset, and was used as a basis 
from which to perform semi-automated cell-type annotation of the 
data from the additional time points (Fig. 1b, Extended Data Fig. 4b). 
Using this approach, we were able to automatically annotate more than 
70% of the cells. All the automated cell annotations were reviewed and 
approved by human experts, and the remaining cells were annotated 
by hand, creating one of the largest manually curated single-cell tran-
scriptomic resources in existence. Many of these cell types have not 
previously been obtained in pure populations, and these data provide 

a wealth of new information about their characteristic gene expression 
profiles. Out of 529,823 total cells sequenced, 110,824 cells for FACS and 
245,389 cells for droplet passed our strict filtering criteria (Extended 
Data Fig. 4b) and were annotated (Extended Data Fig. 2a, b), which was 
carried out separately for each tissue and method. The remaining cells 
are also included in the online dataset but were not used for further 
analysis here. To investigate whether cell annotations were consist-
ent across the entire organism, we used the bbknn batch-alignment 
algorithm6 to correct for method-associated batch effects (Supple-
mentary Table 3). After batch correction, we clustered all cells using an 
unbiased, graph-based clustering approach7,8 (Fig. 1c, d) and assessed 
the co-occurrence of similarly annotated cells in the same clusters. For 
example, cells annotated as B cells or endothelial cells tend to occupy 
the same clusters irrespective of their tissue of origin or the method 
with which they were processed (Fig. 1e, f, Extended Data Fig. 1g–l).

The Tabula Muris Senis enables the discovery of ageing-related 
changes in specific cell types. Single-cell data enables us to resolve 
whether gene expression changes observed in bulk experiments are due 
to changes in gene expression in each cell of the population, or whether 
the gene expression in each cell stays constant but the number of cells 
of that type changes, or both. In a global analysis of gene expression 
changes using the Tabula Muris Senis and bulk RNA sequencing from 
tissues9, we observed that—in many cases—changes in gene expression 
are due to both changes in the numbers of cells in a population and 
changes in the gene expression levels in each cell (Extended Data Fig. 5a, 
b). As one specific example, we investigated how the fraction of cells 
that express Cdkn2a changes with age. The expression of Cdkn2a and 
its protein product p16 is one of the most frequently used markers of 
senescence10 and is an important hallmark of ageing11. The proportion 
of cells expressing Cdkn2a more than doubled in older mice compared 
with younger mice according to analysis by both FACS (Fig. 2a) and 
droplet (Fig. 2b) methods; this was accompanied by a twofold increase 
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in the expression levels of p16 in cells in which it was expressed (Fig. 2c, 
d). Notably, in 30-month-old mice the fraction of cells that expressed 
p16 was smaller than in 24-month-old mice, perhaps because long-living 
animals have a slower rate of senescence. Using a list of previously 
characterized senescence markers12–15, we plotted the fraction of cells 
expressing each marker across all age groups (Supplementary Table 4). 
Cdkn2a has the highest correlation between ageing and the fraction 
of cells in which it is expressed; other genes with positive correlation 
include E2f216, Lmnb117,18, Tnf and Itgax19. For some genes, including 
members of the Sirt family (Sirt3, Sirt4 and Sirt5), the fraction of cells 
in which they were expressed was found to decrease with age; this is 
consistent with previous literature finding that sirtuins—the protein 
products of Sirt genes—are essential in delaying cellular senescence20,21.

The cellular composition of each tissue type tends to vary with age. 
We investigated changes in the cellular composition of tissues for which 
data from at least three time points was available (Supplementary 
Table 5). Because dissociation does not affect all cell types in a tissue 
equally, changes in the relative composition of a given cell type with 
age are more meaningful than comparing proportions of different 
cell types at a single age22–24. The bladder shows pronounced changes 
in cell-type composition with age (Fig. 2e): whereas the mesenchymal 
compartment of this tissue decreases by a factor of three over the life-
time of the mouse (Fig. 2e, left), the urothelial compartment increases 
by a similar amount (Fig. 2e, right). The observation that the propor-
tion of bladder urothelial cells increases with age is concordant with 
known age-related urothelial changes25. Using differential gene expres-
sion analysis to assess overall changes in tissues with age, we found 
that stromal-associated genes (Col1a1, Col1a2, Col3a1 and Dcn) are 
downregulated while epithelial-associated genes (Krt15, Krt18 and Sfn) 

are upregulated, supporting the compositional observations (Fig. 2f, 
Supplementary Table 6). The decline of the endothelial population 
suggests that bladder ageing in mice might be associated with lower 
organ vascularization, which is consistent with recent findings26,27 and 
with the observed downregulation of vasculature-associated genes 
Htra1 and Fos (Fig. 2f, Supplementary Table 6). The increase in the 
leukocyte population could indicate an inflammatory tissue micro-
environment, a common hallmark of ageing that is consistent with 
literature on overactive bladders28 and is supported by a significant 
overexpression of Lgals3, Igfbp2 and Ly6d across the tissue (Fig. 2f, 
Supplementary Table 6), as well as by the overexpression of genes 
associated with immune response—such as Tnfrsf12a and Cdkn1a—in 
both bladder (mesenchymal) cells and bladder urothelial cells (Supple-
mentary Table 6). Moreover, when comparing across ages, we observed 
that old leukocytes show increased expression of pro-inflammatory 
markers—such as Cd14, Lgals3 and Tnfrsf12a—and decreased expression 
of anti-inflammatory markers such as Cd9 and Cd81 (Supplementary 
Table 6).

Age-related changes in the kidney include a decrease in the relative 
abundance of mesangial cells, capillary endothelial cells, loop of Henle 
ascending limb epithelial cells and loop of Henle thick ascending limb 
epithelial cells (Fig. 2g). Both mesangial cells and capillary endothelial 
cells are core glomerular cells, and the reduction in their relative abun-
dances with age (Fig. 2g, top)—together with a tissue-wide reduction of 
Egf and Atp1a1 expression (Fig. 2h, Supplementary Table 6)—suggest an 
impaired glomerular filtration rate29,30. Notably, local Atp1a1 expression 
increases with age in both capillary endothelial cells and mesangial cells, 
suggesting that a compensation mechanism counteracts the effects of 
the declining proportion of these cells with age. This finding is reinforced 
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Fig. 1 | Overview of the Tabula Muris Senis. a, A total of 23 organs from 19 male 
and 11 female mice were analysed at 6 different time points. The bar plot shows 
the number of sequenced cells per organ prepared by FACS (n = 23 organs) and 
by microfluidic droplets (n = 16 organs). For the droplet dataset the fat 
sub-tissues were processed together (Fat = BAT + GAT + MAT + SCAT; BAT, 
brown adipose tissue; GAT, gonadal adipose tissue; MAT, mesenteric adipose 
tissue; SCAT, subcutaneous adipose tissue). b, Annotation workflow. Data were 
clustered together across all time points. We used the Tabula Muris (3-month 

time point) as a reference for the automated pipeline and the annotations were 
manually curated by tissue experts. c, d, Uniform manifold approximation and 
projection (UMAP) plot of all cells, coloured by organ and overlaid with the 
Louvain cluster numbers (c) and age (d); n = 356,213 individual cells. See 
Extended Data Fig. 4c, d for the colour dictionaries. e, f, B cells (e) and 
endothelial cells (f) independently annotated for each organ cluster together 
by unbiased whole-transcriptome Louvain clustering, irrespective of the organ 
in which they were found.
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by the results of differential gene expression analysis, suggesting that 
the expression of Umod—which encodes uromodulin, the most abun-
dant protein in urine31—is also reduced across the tissue. The protein 
uromodulin is produced by the epithelial cells that line the thick ascend-
ing limb, and therefore—given the relative decrease in the proportion 
of epithelial cells in the ascending and the thick ascending limb—our 
results suggest that normal kidney functions are impaired32 (Fig. 2g, 
bottom, Fig. 2h, Supplementary Table 6). As with Atp1a1, we see that the 
expression of Umod increases in a cell type that becomes less abundant 
with age, leading to an overall reduction of its expression in the organ.

In the spleen, the proportion of T cells decreases with age while the 
relative amount of plasma cells increases (Fig. 2i). This is supported 
by the upregulation of B cell and plasma cell marker genes (Cd79a and 
Jchain (also known as Igj), respectively; Fig. 2j, Supplementary Table 6) 
and the downregulation of Cd3d (Fig. 2j, Supplementary Table 6). Simi-
larly, in the mammary gland we observed a decline of the T cell popula-
tion (Extended Data Fig. 5c). Age-related decline of T cell populations 
has been associated with increased risk of infectious disease and can-
cer33, and our results suggest that such a decline might also occur in 
the spleen and the mammary gland. Moreover, genes encoding AP1 
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Fig. 2 | Cellular changes during ageing. a, b, Bar plot showing the fractions of 
cells expressing Cdkn2a in each age group for FACS (a) and droplet (b) 
experiments. c, d, Bar plot of the median expression of Cdkn2a for the cells that 
do express the gene at each age group for FACS (c) and droplet (d) experiments. 
The y axis shows log-transformed and scaled values. All data are expressed as 
mean ± s.d. with individual data points shown. P values were obtained using a 
Mann–Whitney–Wilcoxon rank-sum two-sided test. n = 44,518, 34,027 and 
31,551 individual cells for FACS at 3, 18 and 24 months, respectively; n = 25,980, 
45,602, 44,645, 35,828, 37,660 and 55,674 individual cells for droplet at 1, 3, 18, 
21, 24 and 30 months, respectively. e, g, i, The relative abundances of bladder 
cells (e, left) and bladder urothelial cells (e, right), kidney capillary endothelial 
cells (g, top left), mesangial cells (g, top right), loop of Henle ascending limb 
epithelial cells (g, bottom left) and loop of Henle thick ascending limb 
epithelial cells (g, bottom right), and spleen plasma cells (i, left) and T cells  

(i, right) change significantly with age. P < 0.05 and r2 > 0.7 for a hypothesis test 
with the null hypothesis that the slope is zero, using two-sided Wald test with 
t-distribution of the test statistic. f, h, j, Top 20 upregulated and top 20 
downregulated genes in bladder (f), kidney (h) and spleen ( j) computed using 
MAST51, treating age as a continuous covariate while controlling for sex and 
technology. Genes were classified as significant under a false-discovery rate 
(FDR) threshold of 0.01 and an age coefficient threshold of 0.005 
(corresponding to an approximately 10%-fold change). For f, n = 970, 3,804, 
2,739 and 3,864 individual cells for bladder at 1, 3, 18 and 24 months, 
respectively; for h, n = 2,488, 2,832, 3,806, 2,257, 6,384 and 5,713 individual 
cells for kidney at 1, 3, 18, 21, 24 and 30 months, respectively; for j, n = 2,986, 
8,839, 7,141, 6,395, 5,245 and 8,946 individual cells for spleen at 1, 3, 18, 21, 24 
and 30 months, respectively. The P values for the cell type compositional 
changes are shown in Supplementary Table 5.
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transcription factors34 (Junb, Jund and Fos) were upregulated with age 
(Extended Data Fig. 5d, Supplementary Table 6), consistent with the 
observation that normal involution of the mammary gland is accom-
panied by increased expression of this gene family35.

The tissue composition of the liver also changes with age. We 
observed an age-related decrease in the relative number of hepato-
cytes (Extended Data Fig. 6a–d), which is supported by the reduction in 
the expression of albumin (Alb; Extended Data Fig. 6e, Supplementary 
Table 6). Differential gene expression analysis revealed an increased 
immune signature, as illustrated by the overexpression of H2-Aa, 
H2-Ab1, H2-D1, H2-Eb1, Cd74, Lyz2 and others (Extended Data Fig. 6e). 
Previous findings suggested that pro-inflammatory macrophages drive 
cellular senescence, and identified the gene Il1b as showing markedly 
different expression in the liver with age12 (Extended Data Fig. 6f). We 
performed in situ RNA staining in liver Kupffer cells (Extended Data 
Fig. 6g) with Clec4f and found that the number of Clec4f-positive cells 
does not change with age, consistent with the results of the tissue com-
position analysis (Extended Data Fig. 6h, Supplementary Table 7). How-
ever, when co-staining with Il1b, we found that the number of cells 
expressing both Clec4f and Il1b increased with age (Extended Data 
Fig. 6h–j). The expression of Il1b is low under normal physiological 
conditions36. Specific blocking of IL1-RI in hepatocytes has been shown 
to attenuate cell death after injury, supporting the idea that increased 
expression of Il1b in Kupffer cells is typically a poor prognostic37. Liver 
sinusoidal endothelial cells (LSECs) have a unique role in immune 
defence, being the main carriers of the mannose receptor (MRC1) in 
this organ38 (Extended Data Fig. 6k). We identified increased expression 
of Mrc1 with age in Kupffer cells, whereas the overall expression of Mrc1 
in liver endothelial cells decreased with age (Supplementary Table 6). 
By performing in situ RNA staining for Mrc1 alongside the classical 
LSEC marker Pecam1 (Extended Data Fig. 6l, Supplementary Table 7), 
we found that the number of Mrc1-expressing LSECs increased with age 
(Extended Data Fig. 6m–o). Although Mrc1 expression did not increase 
with age in LSECs (Supplementary Table 6), the overall number of cells 
expressing Mrc1 did increase significantly with age (Extended Data 
Fig. 6n). LSECs have been found to have a reduced endocytic capacity 
in aged livers, and it has been suggested that LSECs proliferate after 
injury or that bone-marrow-derived LSEC progenitors are recruited to 
the liver. This suggests that changes in the gene signatures of LSECs 
with age are closely linked with the function of these cells in immune 
response.

Genomic instability is among the most widely studied hallmarks of 
ageing1, and full-length transcript data enables analysis of the accumu-
lation of somatic mutations with age. We used the Genome Analysis 
ToolKit39 to identify single-nucleotide polymorphisms across all FACS 
samples simultaneously40,41 (Supplementary Table 8). We focused on 
genes that were expressed in at least 75% of cells for each age group 
within a particular tissue, and observed an age-related increase in 
the number of mutations across all of the organs we analysed (Fig. 3, 
Extended Data Fig. 7a, c, e)—tongue and bladder were the most affected. 
We controlled for sequencing coverage and gene expression levels 
(Extended Data Fig. 8a, c, e), and verified that the number of muta-
tions exceeded those expected from amplification and sequencing 
errors, which can be estimated using External RNA Controls Consor-
tium (ERCC) controls that were spiked into each well42 (Fig. 3, Extended 
Data Figs. 7b, d, f, 8b, d, f). Despite the fact that it is difficult to infer 
absolute genome-wide mutation rates from the transcriptome, which 
is known to overstate apparent mutational rates for various reasons42, 
the observed trend is a useful indirect estimate of mutational frequency 
and genome stability.

Ageing also affects the immune system2, so we analysed clonal rela-
tionships between B cells and T cells throughout the organism. We 
computationally reconstructed the sequence of the B cell receptor 
and the T cell receptor for B cells and T cells present in the FACS data 
using singlecell-ige and TraCeR, respectively43,44. B cell receptors were 

assembled for 6,050 cells (Fig. 4a, Extended Data Fig. 9a) and T cell 
receptors for 6,000 cells (Fig. 4b, Extended Data Fig. 9b). The number 
of cells with assembled B cell receptors was 1,818 for 3-month-old, 
1,356 for 18-month-old and 2,876 for 24-month-old mice. We parsed 
the singlecell-ige43 output to define B cell clonotypes on the basis of 
the sequence of the assembled B cell receptor (Supplementary Table 9) 
and found that, whereas most of the cells at 3 months were not part of 
a clone (9% were part of a clonal family), the number of B cells belong-
ing to a clonotype doubled at 18 months (20%) when compared to  
3 months, and doubled again from 18 months to 24 months (around 
38%). The number of cells with assembled T cell receptors was roughly 
equal between 3-month-old, 18-month-old and 24-month-old mice 
(2,076, 2,056 and 1,868 cells, respectively). Clonotype assignment 
is part of the output obtained by TraCeR44 (Supplementary Table 9). 
Notably, only around 3% (55 out of 1,895) of the cells at 3 months were 
part of a clone. At 18 months and 24 months, this value increased to 
around 23% (479 out of 2,056) and around 20% (348 out of 1,780) of 
the cells, respectively, again indicating an increase in clonality of the 
T cell repertoire at later ages. These changes in clonality for both  
B cell and T cell repertoires are noteworthy, because they suggest 
that the immune system of a 24-month-old mouse is less likely to 
respond to new pathogens. This corroborates literature reports sug-
gesting that older individuals have a higher vulnerability to new infec-
tions and lower benefits from vaccination compared with younger  
individuals45,46.

Finally, we computed an overall diversity score to identify which 
cell types were more susceptible to changes with age (Extended Data 
Fig. 10). The diversity score is computed as the Shannon entropy of 
the cluster assignment and then regressed against age to provide a 
P value (see Methods). We observed significant changes in diversity 
for cells of the immune system that originate from the brain and the 
kidney (Fig. 4c, Extended Data Fig. 11a, b). These results were not con-
founded by the number of genes expressed per cell (Extended Data 
Fig. 11c, d). In brain myeloid microglial cells, the majority of young  
(3 month) microglia occupy clusters 1 and 6, whereas old (18 month and 
24 month) microglia constitute the vast majority of cells in clusters 10, 
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Fig. 3 | Mutational burden across tissues in ageing mice. a–f, Distribution of 
the difference of the mean mutation in the gene set (and ERCC spike-in 
controls) per cell between 24 months and 3 months and between 18 months and 
3 months for all tissues and cells (a) and with the cell types split into five 
functional groups: endothelial cells (b), immune cells (c), parenchymal cells (d), 
stem/progenitor cells (e) and stromal cells (f). Filled and solid line distributions 
correspond to the mean mutation difference in gene set. White and dashed line 
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12 and 14 (Fig. 4d). Trajectory analysis suggests that young microglia 
go through an intermediate state, represented by the clusters mostly 
occupied by 18-month microglial cells, before acquiring the signature 
of old microglia (Extended Data Fig. 11e). Clusters 10, 12 and 14 mainly 
comprise 18-month and 24-month microglia. These cells upregulate 
major histocompatibility complex (MHC) class I genes (H2-D1, H2-K1 
and B2m), along with genes associated with degenerative disease (for 
example, Fth1)47,48. When compared with clusters 1 and 6—which con-
tain mostly 3-month microglia—gene expression in clusters 10, 12 and 
14 is enriched with interferon responsive or regulatory genes (for exam-
ple, Oasl2, Oas1a, Ifit3, Rtp4, Bst2, Stat1, Irf7, Ifitm3, Usp18, Ifi204 and 
Ifit2), suggesting an expansion of this small pro-inflammatory subset 
of microglia in the ageing brain49. Moreover, the list of differentially 
expressed genes between ‘young’ and ‘old’ clusters resembles the pre-
viously reported Alzheimer’s disease-specific microglial signature47, 
with 55 out of the top 200 differential expressed genes shared between 
the two differential gene expression lists (Fig. 4e, Supplementary 
Table 10). Regarding kidney macrophages, we found two clusters for 
which the composition changed markedly with age. Cluster 10 is pri-
marily composed of cells from 1-month-old and 3-month-old mice, 
whereas cluster 13 is mostly composed of cells from18-month-old, 
21-month-old, 24-month-old and 30-month old mice (Fig. 4f). Dif-
ferential gene expression revealed that cluster 10 is enriched for an 
M2-macrophage gene signature (for example, Il10, H2-Eb1, H2-Ab1, 
H2-Aa, Cd74, C1qa, Cxcl16, Hexb, Cd81, C1qb and Cd72) whereas cluster 
13 resembles a M1-proinflammatory macrophage state50 (for example, 
Hp, Itgal, Msrb1 and Gngt2) (Extended Data Fig. 11f, Supplementary 
Table 10).

The Tabula Muris Senis is a comprehensive resource for the 
cell biology community that offers a detailed molecular and 
cell-type-specific portrait of ageing. We view such a cell atlas as an 
essential companion to the genome: the genome provides a blue-
print for the organism, but does not explain how genes are used in 
a cell-type-specific manner or how the usage of genes changes over 
the lifetime of the organism. The cell atlas provides a deep charac-
terization of phenotype and physiology and serves as a reference 

for understanding many aspects of the changes in cell biology that 
occur in mammals during their lifespan.
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Methods

All data, protocols, analysis scripts and an interactive data browser 
are publicly available.

Experimental procedures
Mice and organ collection. Male and virgin female C57BL/6JN mice 
were shipped from the National Institute on Ageing colony at Charles 
River (housed at 19–23 °C) to the Veterinary Medical Unit (VMU; housed 
at 20–24 °C)) at the VA Palo Alto (VA). At both locations, mice were 
housed on a 12 h/12 h light/dark cycle and provided with food and water 
ad libitum. The diet at Charles River was NIH-31, and at the VA VMU was 
Teklad 2918. Littermates were not recorded or tracked, and mice were 
housed at the VA VMU for no longer than 2 weeks before euthanasia, 
with the exception of mice older than 18 months, which were housed 
at the VA VMU beginning at 18 months of age. Before tissue collec-
tion, mice were placed in sterile collection chambers at 8:00 for 15 
min to collect fresh fecal pellets. After anaesthetization with 2.5% v/v 
Avertin, mice were weighed, shaved, and blood was drawn via cardiac 
puncture before transcardial perfusion with 20 ml PBS. Mesenteric 
adipose tissue was then immediately collected to avoid exposure to 
the liver and pancreas perfusate, which negatively affects cell sorting. 
Isolating viable single cells from both the pancreas and the liver of the 
same mouse was not possible; therefore, two males and two females 
were used for each. Whole organs were then dissected in the following 
order: large intestine, spleen, thymus, trachea, tongue, brain, heart, 
lung, kidney, gonadal adipose tissue, bladder, diaphragm, limb muscle 
(tibialis anterior), skin (dorsal), subcutaneous adipose tissue (ingui-
nal pad), mammary glands (fat pads 2, 3 and 4), brown adipose tissue 
(interscapular pad), aorta and bone marrow (spine and limb bones). 
Organ collection concluded by 10:00. After single-cell dissociation as 
described below, cell suspensions were used either for FACS of indi-
vidual cells into 384-well plates, or for preparation of the microfluidic 
droplet library. All animal care and procedures were carried out in 
accordance with institutional guidelines approved by the VA Palo Alto 
Committee on Animal Research.

Tissue dissociation and sample preparation. All tissues were pro-
cessed as previously described5.

Sample size, randomization and blinding. No sample size choice was 
performed before the study. Randomization and blinding were not 
performed: the authors were aware of all data and metadata-related 
variables during the entire course of the study.

Single-cell methods. All protocols used in this study are described 
in detail elsewhere5. These include: preparation of lysis plates; FACS 
sorting; cDNA synthesis using the Smart-seq2 protocol52,53; library 
preparation using an in-house version of Tn554,55; library pooling and 
quality control; and sequencing. For further details please refer to 
https://doi.org/10.17504/protocols.io.2uwgexe.

Microfluidic droplet single-cell analysis. Single cells were captured 
in droplet emulsions using the GemCode Single-Cell Instrument (10x 
Genomics) and scRNA-seq libraries were constructed as per the 10x 
Genomics protocol using GemCode Single-Cell 3′ Gel Bead and Library 
V2 Kit. In brief, single cell suspensions were examined using an inverted 
microscope, and if sample quality was deemed satisfactory, the sample 
was diluted in PBS with 2% FBS to a concentration of 1,000 cells per µl. 
If cell suspensions contained cell aggregates or debris, two additional 
washes in PBS with 2% FBS at 300g for 5 min at 4 °C were performed. Cell 
concentration was measured either with a Moxi GO II (Orflo Technolo-
gies) or a haemocytometer. Cells were loaded in each channel with a 
target output of 5,000 cells per sample. All reactions were performed 
in the Biorad C1000 Touch Thermal cycler with 96-Deep Well Reaction 

Module. Twelve cycles were used for cDNA amplification and sample 
index PCR. Amplified cDNA and final libraries were evaluated on a Frag-
ment Analyzer using a High Sensitivity NGS Analysis Kit (Advanced 
Analytical). The average fragment length of 10x cDNA libraries was 
quantitated on a Fragment Analyzer (AATI), and by qPCR with the Kapa 
Library Quantification kit for Illumina. Each library was diluted to 2 
nM, and equal volumes of 16 libraries were pooled for each NovaSeq 
sequencing run. Pools were sequenced with 100 cycle run kits with 26 
bases for Read 1, 8 bases for Index 1, and 90 bases for Read 2 (Illumina 
20012862). A PhiX control library was spiked in at 0.2 to 1%. Libraries 
were sequenced on the NovaSeq 6000 Sequencing System (Illumina).

In situ RNA hybridization and quantification. In situ RNA hybridiza-
tion was performed using the Advanced Cell Diagnostics RNAscope 
Multiplex Fluorescent Detection kit v2 (323110, Bio-Techne) accord-
ing to the manufacturer’s instructions. Staining of mouse liver speci-
mens was performed using 5-µm paraffin-embedded thick sessions. 
Mouse livers were fixed in 10% formalin buffer saline (HT501128, 
Sigma-Aldrich) for 24 h at room temperature before paraffin embed-
ding. For multiplex staining the following probes were used; Clec4f 
(Mm-Clec4f 480421, Il1b (Mm-Il1b 316891-C2), Pecam1 (Mm-Pecam-1 
316721), Mrc1 (Mm-Mrc1 437511-C3). Slides were counterstained with 
Prolong gold antifade reagent with DAPI (P36931, Life Technologies). 
Mounted slides were imaged on a Leica DM6 B fluorescent microscope 
(Leica Biosystems). Image quantification was performed using the 
starfish open source image-based transcriptomics pipeline (see Star-
fish: Open Source Image Based Transcriptomics and Proteomics Tools, 
available from http://github.com/spacetx/starfish and ref. 58).

Computational methods
Data extraction. Sequences from the NovaSeq were de-multiplexed us-
ing bcl2fastq v.2.19.0.316. Reads were aligned to the mm10plus genome 
using STAR v.2.5.2b with parameters TK. Gene counts were produced 
using HTSEQ v.0.6.1p1 with default parameters, except ‘stranded’ was 
set to ‘false’, and ‘mode’ was set to ‘intersection-nonempty’. Sequenc-
es from the microfluidic droplet platform were de-multiplexed and 
aligned using CellRanger v.2.0.1, available from 10x Genomics with 
default parameters.

Data pre-processing. Gene count tables were combined with the meta-
data variables using the Scanpy56 Python package v.1.4.2. We removed 
genes that were not expressed in at least 3 cells and then cells that did 
not have at least 250 detected genes. For FACS we removed cells with 
fewer than 5,000 counts, and for the droplet method we removed cells 
with fewer than 2,500 unique molecular identifiers (UMIs). The data 
was then normalized using size factor normalization such that every 
cell has 10,000 counts and log transformed. We computed highly 
variable genes using default parameters and then scaled the data to a 
maximum value of 10. We then computed principal component analy-
sis, neighbourhood graph and clustered the data using Louvain7 and 
Leiden8 methods. The data was visualized using UMAP projection. 
When performing batch correction to remove the technical artefacts 
introduced by the technologies, we replaced the neighbourhood graph 
computation with bbknn6. Step-by-step instructions to reproduce the 
pre-processing of the data are available from GitHub.

Cell type annotation. To define cell types we analysed each organ 
independently but combining all ages. In brief, we performed principal 
component analysis on the most variable genes between cells, followed 
by Louvain and Leiden graph-based clustering. Next we subset the data 
for 3 months (Tabula Muris5) and computed how many cell types map 
to each individual cluster. For the clusters that had a single 1:1 mapping 
(cluster:cell type) we propagated the annotations for all ages; in case 
there is a 1:many mapping we flagged that cluster for manual valida-
tion. Step-by-step instructions to reproduce this method are available 



from GitHub. For each cluster, we provide annotations in the controlled 
vocabulary of the cell ontology57 to facilitate inter-experiment com-
parisons. Using this method, we were able to annotate automatically 
(around 1 min per tissue) more than 70% of the dataset. The automatic 
annotations were then reviewed by each of the tissue experts leading 
to a fully curated dataset for all the cell types in the Tabula Muris Senis.

Tissue cell composition analysis. For each tissue and age, we com-
puted the relative proportion of each cell type. Next we used scipy.stats 
linregress to regress the relative tissue-cell type changes against age 
and considered significant the changes with P < 0.05 for a hypothesis 
test with the null hypothesis that the slope is zero, using two-sided Wald 
test with t-distribution of the test statistic and a r2 > 0.5.

Differential gene expression. We performed differential gene expres-
sion analysis on each tissue with a well-powered sample size (more than 
100 cells in both young (1 month and 3 month) and old (18 months, 
21 months, 24 months and 30 months) age groups). We used a linear 
model51 treating age as a numerical variable while controlling for sex 
and technology. We applied a false-discovery rate (FDR) threshold of 
0.01 and an age coefficient threshold of 0.005 (corresponding to an 
approximately 10% fold change).

Comparison between bulk and single-cell datasets. The differential 
gene analysis was defined on a per tissue basis. First, we investigated 
genes on the basis of the single-cell data. We considered only cells from 
male mice and perform our analysis on the log (1 + counts per million 
(cpm)) transformed single-cell count matrices. Note that normaliza-
tion of the single-cell data was done on a per cell basis. We defined two 
groups of cells on the basis of age: young cells with age ≤ 3 months (Y) 
and old cells with age >3 months (O). For each gene we compute the 
log2 fold change of cell and read counts between O and Y. We defined 
cell count as the fraction of cells that express the gene. Similarly, we 
defined read count as the mean read count of the gene in the cells that 
express it. The calculated log2 fold-changes of a gene reflect its expres-
sion changes with ageing within the single-cell data. Next we analysed 
each gene on the basis of the bulk data. We computed the Spearman 
correlation (ρ) of bulk DESeq2 normalized gene expression with ageing. 
We defined two groups of genes on the basis of the bulk data, increas-
ing with age ρ > 0.7 (U) and decreasing with age ρ < −0.7 (D). Finally, we 
compared the log2 fold-changes based on the single-cell data between 
the bulk data defined groups U and D. Specifically, we ran a Wilcoxon–
Mann–Whitney test to understand whether log2 fold-changes of cell or 
read counts could distinguish between the two groups. We used the U 
statistic for effect size.

T cell processing. We used TraCeR44 v.0.5 to identify T cell clonal popu-
lations. We ran tracer assemble with–species Mmus set. We then ran 
tracer summarize with –species Mmus to create the final results. We 
used the following versions for TraCeR dependencies: igblast v.1.7.0, 
kallisto v.0.43.1, Salmon v.0.8.2, Trinity v.2.4.0, GRCm38 reference 
genome. Step-by-step instructions to reproduce the processing of the 
data are available from GitHub.

B cell processing. We used singlecell-ige43 v.eafb6d126cc2d6511faae
3efbd442abd7c6dc8ef (https://github.com/dcroote/singlecell-ige) to 
identify B cell clonal populations. We used the default configuration 
settings, except we set the species to mouse. Step-by-step instructions 
to reproduce the processing of the data are available from GitHub.

Mutation analysis. We used samtools59 v.1.9 and GATK39 v.4.1.1.0 for 
mutation analysis. We used samtools faidx to create our index file. 
Then we used GATK CreateSequenceDictionary and GRCm38, as the 
reference, to create our sequence dictionary. Next we used GATK Ad-
dOrReplaceReadGroups to create a single read group using parameters 

-RGID 4 -RGLB lib1 -RGPL illumina -RGPU unit1 -RGSM 20. Finally we used 
GATK HaplotypeCaller to call the mutations. We disabled the following 
read filters: MappingQualityReadFilter, GoodCigarReadFilter, NotSec-
ondaryAlignmentReadFilter, MappedReadFilter, MappingQualityA-
vailableReadFilter, Non-zeroReferenceLengthAlignmentReadFilter, 
NotDuplicateReadFilter, PassesVendorQualityCheckReadFilter, and 
WellformedReadFilter, but kept all other default settings. The results 
were summarized per gene in the form of a mutation count per cell 
table. We started by removing genes mutated in more than 60% of cells, 
to eliminate the possible bias of germline mutations. Then for each 
tissue we selected genes expressed in at least 75% of the cells for all the 
time points to avoid confounding the mutation results with differential 
gene expression associated with age. Next we computed the average 
number of mutations in the gene set (or ERCC spike-in controls) per cell 
and also the average number of raw counts (Supplementary Table 8) 
and plotted the different distributions. Step-by-step instructions to 
reproduce the processing of the data are available from GitHub.

Trajectory analysis. We used partition-based graph abstraction 
(PAGA60) to reconstruct the ageing trajectory in brain microglial cells. 
Step-by-step instructions to reproduce the processing of the data are 
available from GitHub.

Diversity score. The raw FACS or droplet dataset were used as the 
input. We filtered genes expressed in fewer than 5 cells, filtered cells if 
expressing fewer than 500 genes and discarded cells with total number 
of counts less than 5,000. Next we performed size factor normalization 
such that every cell had 1× 104 counts and performed a log1p transfor-
mation. This was followed by clustering, in which we clustered every 
tissue and every tissue-cell type for every mouse separately using 6 dif-
ferent configurations: resolution parameters (0.3, 0.5, 0.7) × clustering 
method (Louvain, Leiden). This is to provide a robust clustering result. 
For each combination (each tissue–mouse and each tissue–cell_type–
mouse), we computed the clustering diversity score as the Shannon 
entropy of the cluster assignment. We then regressed the diversity score 
against age to detect the systematic increase or decrease of clustering 
diversity with respect to age. FDR was used to correct for multiple 
comparisons. A tissue or a tissue–cell type was selected if the slope was 
consistent (having the same sign) in all six clustering configurations 
and at least two out of six clustering configurations had FDR <0.3. For 
each selected tissue or tissue–cell type, a separate UMAP was computed 
using cells from all mice for visualization using Leiden clustering with 
resolution parameter 0.7.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
The entire dataset can be explored interactively at http://
tabula-muris-senis.ds.czbiohub.org/. Gene counts and metadata are 
available from figshare (https://doi.org/10.6084/m9.figshare.8273102.
v2) and the Gene Expression Omnibus under accession code GSE132042; 
the raw data files are available from a public AWS S3 bucket (https://
registry.opendata.aws/tabula-muris-senis/).

Code availability
The code used for the analysis is available from GitHub at https://github.
com/czbiohub/tabula-muris-senis.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | UMAP visualizations of the whole Tabula Muris Senis. 
a, b, UMAP plot of all cells collected for FACS coloured by tissue (a) or age (b).  
c, UMAP plot of all cells collected by FACS, coloured by organ (Extended Data 
Fig. 4c), overlaid with the Louvain cluster numbers. n = 110,824 individual cells 
for FACS. d, e, UMAP plot of all cells collected for droplet coloured by tissue (d) 
or age (e). f, UMAP plot of all cells collected by droplet, coloured by organ 
(Extended Data Fig. 4c), overlaid with the Louvain cluster numbers. n = 245,389 
individual cells for droplet. g, B cells (left) and endothelial cells (right) in FACS 
independently annotated for each organ cluster together by unbiased whole-

transcriptome Louvain clustering, irrespective of the organ from which they 
originated. h, B cells (left) and endothelial cells (right) in droplet independently 
annotated for each organ cluster together by unbiased whole-transcriptome 
Louvain clustering, irrespective of the organ from which they originated.  
i, j, UMAP plot of all cells collected coloured by method (i) or tissue ( j). 
n = 356,213 individual cells for FACS and droplet combined. k, l, B cells (k) and 
endothelial cells (l) cluster together by unbiased whole-transcriptome Louvain 
clustering, irrespective of the technology by which they were found.



Extended Data Fig. 2 | Tabula Muris Senis quality control statistics overall 
summary and detailed for the FACS dataset. a, Pie chart with the summary 
statistics for FACS. b, Pie chart with the summary statistics for droplet. c, Box 
plot of the number of genes detected per cell for each organ and age for FACS. 
d, Box plot of the number of reads per cell (log-scale) for each organ and age  

for FACS. For c, d, all data are expressed as mean ± s.d. Individual data points 
(black diamonds) correspond to outliers outside of the quantile distribution. 
The sample size (number of cells for each tissue and age) is available in 
Supplementary Table 1.
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Extended Data Fig. 3 | Tabula Muris Senis quality control statistics detailed 
for the droplet dataset. a, Box plot of the number of genes detected per cell 
for each organ and age for droplet. b, Box plot of the number of UMIs per cell 
(log scale) for each organ and age for droplet. All data are expressed as 

mean ± s.d. Individual data points (black diamonds) correspond to outliers 
outside of the quantile distribution. The sample size (number of cells for each 
tissue and age) is available in Supplementary Table 2.



Extended Data Fig. 4 | Number of cells in Tabula Muris Senis across age, sex, 
tissue and technology and schematic the of data processing. a, Balloon plot 
showing the number of sequenced cells per sequencing method per organ 

per sex per age. b, Schematic of the analysis workflow. c, d, Tabula Muris Senis 
colour dictionary for organs and tissues (c) and ages (d).
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Extended Data Fig. 5 | See next page for caption.



Extended Data Fig. 5 | Comparison of bulk and single-cell datasets and 
tissue cell compositions. a, b, Ageing patterns from bulk and single-cell data 
are consistent. Strong changes in bulk gene expression with ageing can be 
either explained by cell or read count-based changes in single-cell data FACS (a) 
and droplet (b). Two-sided Wilcoxon–Mann–Whitney indicates that single-cell 
data based log2 fold-changes of cell or read counts distinguish between up and 
down regulated genes in bulk data. n = 110,824 individual cells for FACS and 
n = 245,389 individual cells for droplet. c, Mammary gland T cell relative 
abundances change significantly with age (P < 0.05 and r2 > 0.7 for a hypothesis 
test with the null hypothesis that the slope is zero, using two-sided Wald test 
with t-distribution of the test statistic). d, Top 20 upregulated and 
downregulated genes in mammary gland computed using MAST51, treating age 
as a continuous covariate while controlling for sex and technology. Genes were 
classified as significant under an FDR threshold of 0.01 and an age coefficient 
threshold of 0.005 (corresponding to an approximately 10% fold change). 
n = 6,393, 3,635 and 5,549 individual cells for mammary gland at 3, 18 and  
21 months, respectively. e, Relative abundances of marrow precursor B cells 
change significantly with age (P < 0.05 and r2 > 0.7 for a hypothesis test with the 

null hypothesis that the slope is zero, using two-sided Wald test with t-
distribution of the test statistic). f, Top 20 upregulated and downregulated 
genes in marrow computed using MAST51, treating age as a continuous 
covariate while controlling for sex and technology. Genes were classified as 
significant under an FDR threshold of 0.01 and an age coefficient threshold of 
0.005 (corresponding to an approximately 10% fold change). n = 3,027, 8,559, 
11,496, 5,216, 12,943 and 13,496 individual cells for marrow at 1, 3, 18, 21, 24 and 
30 months, respectively. g, Relative abundances of skin keratinocyte stem cells 
change significantly with age (P < 0.05 and r2 > 0.7 for a hypothesis test with the 
null hypothesis that the slope is zero, using two-sided Wald test with t-
distribution of the test statistic). h, Top 20 upregulated and downregulated 
genes in skin computed using MAST51, treating age as a continuous covariate 
while controlling for sex and technology. Genes were classified as significant 
under an FDR threshold of 0.01 and an age coefficient threshold of 0.005 
(corresponding to an approximately 10% fold change). n = 2,346, 1,494, 4,352 
and 1,122 individual cells for skin at 3, 18, 21 and 24 months, respectively.  
The P values for the cell type compositional changes are shown in 
Supplementary Table 5.
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Extended Data Fig. 6 | See next page for caption.



Extended Data Fig. 6 | Cellular changes during ageing in the liver. a, Relative 
abundances of liver hepatocytes change significantly with age (P < 0.05 and  
r2 > 0.7 for a hypothesis test with the null hypothesis that the slope is zero, using 
two-sided Wald test with t-distribution of the test statistic). n = 2,791, 2,832, 
3,806, 2,257, 6,384 and 5,713 individual cells for liver 1, 3, 18, 21, 24 and 30 
months, respectively. The P values for the cell type compositional changes are 
shown in Supplementary Table 5. b–d, Bright-field imaging of hepatocytes at 
different ages (b) and respective quantification (c, d). e, Top 10 upregulated 
and downregulated genes in liver computed using MAST51, treating age as a 
continuous covariate while controlling for sex and technology. Genes were 

classified as significant under an FDR threshold of 0.01 and an age coefficient 
threshold of 0.005 (corresponding to an approximately 10% fold change). The 
sample size is the same as for a. f, k, Gene expression of Il1b and Clec4f (f) and 
Pecam1 and Mrc1 (k) in the liver droplet dataset for the six ages. g–j, Staining of 
Kupffer cells at different ages (g) and respective quantification (h–j).  
l–o, Staining of liver endothelial cells at different ages (l) and respective 
quantification (m–o). Scale bars, 100 µm. For c, d, h–j and m–o, all data are 
expressed as mean ± s.d. and P values were obtained using a Welch’s test.  
The sample size for each group is available in Supplementary Table 7.
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Extended Data Fig. 7 | Mean number of somatic mutations with age.  
a–f, Mean number of somatic mutations in genes (a, c, e) and ERCC spike-in 
controls (b, d, f) across all tissues per age group (3 months and 24 months (a, b), 

3 months and 18 months (c, d), 18 months and 24 months (e, f)). Mutations are 
presented as the mean number of mutations per gene or ERCC spike-in per cell.



Extended Data Fig. 8 | Gene (raw) expression with age. a–f, Gene raw 
expression (a, c, e) and ERCC spike-in control raw expression (b, d, f) across all 
tissues per age group (3 months and 24 months (a, b), 3 months and 18 months 

(b, d), 18 months and 24 months (c, e)). Raw expression are presented as the 
mean number of counts per gene or ERCC spike-inn control per cell.
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Extended Data Fig. 9 | Immune repertoire clonality analysis. a, B-cell clonal 
families. For each time point, the clonal families are represented in a tree 
structure for which the central node is age. Connected to the age node there is 
an additional node (dark grey) that represents each mouse and the clonal 
families are depicted for each mouse. For each clonal family, cells that are part 
of that family are coloured by the organ of origin. b, T-cell clonal families.  

For each time point, clonal families are represented in a tree structure for which 
the central node is age. Connected to the age node there is an additional node 
(dark grey) that represents each mouse and the clonal families are depicted for 
each mouse. For each clonal family, cells that are part of that family are 
coloured by the organ of origin.



Extended Data Fig. 10 | Diversity score summary. a, b, Heat map summary of the overall tissue diversity score for FACS (a) and droplet (b). c, d, Heat map 
summary of the tissue cell-type diversity score for FACS (c) and droplet (d).
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Extended Data Fig. 11 | Diversity score and differential gene expression 
analysis for brain myeloid and kidney. a, b, Diversity score at different cluster 
resolutions for FACS brain myeloid microglia cell (a) and droplet kidney 
macrophage (b). n = 14 mice for a and n = 16 mice for b. All data are expressed as 
quantiles. The P values were obtained using a linear regression and two-sided 
F-test, adjusted for multiple comparison using the Benjamini–Hochberg 
procedure (that is, bh-p value). c, d, Diversity score correlation with the number 

of genes expressed per tissue (c) or tissue cell-type (d). The red line 
corresponds to the linear regression curve. e, Trajectory analysis for a brain 
myeloid microglia cell. f, Heat map showing differential gene expression 
analysis of cluster 10 (mostly young macrophages) compared with cluster 13 
(mostly old macrophages). For the complete gene list, see Supplementary 
Table 10.



1

nature research  |  reporting sum
m

ary
O

ctober 2018

Corresponding author(s):
Spyros Darmanis, Tony Wyss-Coray and 
Stephen R. Quake

Last updated by author(s):� "QSJM��, 2020

Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection

Data analysis

Sequences from the NovaSeq were de-multiplexed using bcl2fastq version 2.19.0.316. Reads were aligned using to the mm10plus 
genome using STAR version 2.5.2b with parameters TK. Gene counts were produced using HTSEQ version 0.6.1p1 with default 
parameters, except ‘stranded’ was set to ‘false’, and ‘mode’ was set to ‘intersection-nonempty’. Sequences from the microfluidic droplet 
platform were de-multiplexed and aligned using CellRanger version 2.0.1, available from 10x Genomics with default parameters.

8F�VTFE�1ZUIPO�WFSTJPO����
�4DBOQZ�W�����
�CCLOO�W�����
�4UBSGJTI�W�����
�5SB$F3�W���
�4BMNPO�W�����
�,BMMJTUP�W������
�BOE�%&4FR��
W��������$PEF�JT�BWBJMBCMF�GSPN�(JU)VC�	IUUQT���HJUIVC�DPN�D[CJPIVC�UBCVMB�NVSJT�TFOJT
.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

The dataset can be explored interactively at tabula-muris-senis.ds.czbiohub.org.  Gene counts, metadata and raw data are available from a public AWS S3 bucket 
(https://s3.console.aws.amazon.com/s3/buckets/czb-tabula-muris-senis/) and GEO�(4&������. All code is available from GitHub (https://github.com/czbiohub/
tabula-muris-senis)



2

nature research  |  reporting sum
m

ary
O

ctober 2018

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences
For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size

Data exclusions

Replication

Exclusion criteria were pre-establish: Cells with fewer than 500 detected genes were excluded. (A gene counts as detected if it has at least one 
read mapping to it). Cells with fewer than 50,000 reads (FACS) or 1000 UMI (microfluidic droplet) were excluded.

Randomization

Besides the biological replicates included in the study, we have not replicated any findings 

Blinding We did not have experimental groups in this study.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
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ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used Number;Antigen name;Fluorophore;Company;Cat No;Reactivity species;Origin species;Clonality;Clone;Application;Link 

1;ACSA2;PE;Miltenyi;130102365;mouse;rat;monoclonal;  IH3-18A3;IF, FC;https://www.miltenyibiotec.com/US-en/products/
macs-flow-cytometry/antibodies/primary-antibodies/anti-acsa-2-antibodies-mouse-ih3-18a3-1-10.html/ 
2;rabbit IgG;AF488;Invitrogen;A11034;rabbit;goat;polyclonal;NA;IF, FC, IHC;https://www.thermofisher.com/antibody/product/
Goat-anti-Rabbit-IgG-H-L-Highly-Cross-Adsorbed-Secondary-Antibody-Polyclonal/A-11034 
3;Ter119;Pacific Blue;Biolegend;116232;mouse;rat;monoclonal;Ter-119;FC;https://www.biolegend.com/en-us/products/pacific-
blue-anti-mouse-ter-119-erythroid-cells-antibody-6137 
4;CD45R/B220;FITC;BioLegend;103206;mouse,human,cat;rat;monoclonal;  RA3-6B2;FC;https://www.biolegend.com/en-us/
products/fitc-anti-mouse-human-cd45r-b220-antibody-445 
5;CD106;PE/Cy7;BioLegend;105720;mouse;rat;monoclonal; 429 (MVCAM.A);FC;https://www.biolegend.com/en-us/products/pe-
cy7-anti-mouse-cd106-antibody-6135 
6;CD11B/MAC1;FITC;BioLegend;101206;mouse, human, chimpanzee, baboon, cynomolgus, rhesus, rabbit;rat;monoclonal;  
M1/70;FC;https://www.biolegend.com/en-us/products/fitc-anti-mouse-human-cd11b-antibody-347 
7;anti-mouse Lineage Cocktail;FITC;BioLegend;133301;mouse;Armenian Hamster, rat;mixture of monoclonals;145-2C11, 
RB6-8C5, M1/70, RA3-6B2, Ter-119;FC;https://www.biolegend.com/de-de/products/fitc-anti-mouse-lineage-cocktail-with-
isotype-ctrl-5803 
8;CD11b;BV421;BioLegend;101236;mouse, human, chimpanzee, baboon, cynomolgus, rhesus, rabbit;rat;monoclonal;  
M1/70;FC;https://www.biolegend.com/de-de/products/brilliant-violet-421-anti-mouse-human-cd11b-antibody-7163 
9;CD11b;PE/Cy7;BD Pharmingen;552850;mouse, human, chimpanzee, baboon, cynomolgus, rhesus, rabbit;rat;monoclonal;  
M1/70;FC;https://www.bdbiosciences.com/eu/applications/research/stem-cell-research/mesenchymal-stem-cell-markers-bone-
marrow/mouse/negative-markers/pe-cy7-rat-anti-cd11b-m170/p/552850 
10;CD140a/PDGFRa;APC;R&D Systems;AF1062;mouse;mouse;polyclonal;NA;WB, IHC;https://www.rndsystems.com/products/
mouse-pdgf-ralpha-antibody_af1062 

/P�TBNQMF�TJ[F�DBMDVMBUJPO�XBT�QFSGPSNFE��5IF�OVNCFS�PG�NJDF�XBT�DIPTFO�UP�JODMVEF�B�NJOJNVN�PG���NJDF�QFS�BHF�HSPVQ��3FHBSEJOH�UIF�OVNCFS�PG�
DFMMT
�OP�QSJPS�TBNQMF�TJ[F�DBMDVMBUJPO�XBT�QFSGPSNFE��5IF�TBNQMF�TJ[F�WBSJFT�GPS�FBDI�PSHBO
�BT�EPDVNFOUFE�JO�UIF�TVQQMFNFOUBM�UFYU��5IJT�XBT�EVF�UP�
FYQFSJNFOUBM�DPOTUSBJOUT
�GPS�FYBNQMF��DPOGMJDUJOH�UJTTVF�EJTTPDJBUJPO�QSPUPDPMT�GPS�MJWFS�BOE�QBODSFBT�XIJDI�MJNJUFE�PVS�BCJMJUZ�UP�QSPDFTT�TJOHMF�DFMMT�
GSPN�CPUI�PG�UIFTF�PSHBOT�GSPN�UIF�TBNF�BOJNBM��8F�IBWF�B�UPUBM�PG����NBMF�BOE����GFNBMF�NJDF�BOE�UIF�TBNQMF�TJ[F�WBSJFT�GPS�FBDI�PSHBO
�BT�
EPDVNFOUFE�JO�UIF�TVQQMFNFOUBM�UFYU�
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EBZ��*O�BEEJUJPO
�HJWFO�UIF�HSPVQJOH�PG�NJDF�BDSPTT�BHF�HSPVQT�BOE�UIF�GBDU�UIBU�FBDI�BHF�HSPVQ�XBT�QSPDFTTFE�BDSPTT�TFWFSBM�EBZT�XF�EP�OPU�CFMJFWF�UIBU�
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11;CD140b/PDGFRb;APC;eBioscience;17-1402-82;mouse;rat;monoclonal;APB5;FC;https://www.thermofisher.com/antibody/
product/CD140b-PDGFRB-Antibody-clone-APB5-Monoclonal/17-1402-80 
12;CD171/L1CAM;PE-Vio770;Miltenyi;130-102-135;mouse;rat;monoclonal;555;FC, IF;https://www.miltenyibiotec.com/US-en/
products/macs-flow-cytometry/antibodies/primary-antibodies/cd171-l1cam-antibodies-mouse-555-1-10.html/ 
13;CD24 ;PE/Cy7;Biolegend;101822;mouse;rat;monoclonal;  M1/69;FC;https://www.biolegend.com/en-us/products/pe-cy7-anti-
mouse-cd24-antibody-3862 
14;CD2;APC;Biolegend;100112;mouse;rat;monoclonal;RM2-5;FC;https://www.biolegend.com/en-ie/products/apc-anti-mouse-
cd2-antibody-9287 
15;CD2;PE/Cy7;BioLegend;100114;mouse;rat;monoclonal;RM2-5;FC;https://www.biolegend.com/de-de/products/pe-cy7-anti-
mouse-cd2-antibody-9288 
16;CD31;Pacific Blue;Biolegend;102422;mouse;rat;monoclonal;390;FC;https://www.biolegend.com/de-de/products/pacific-blue-
anti-mouse-cd31-antibody-6669 
17;CD31;APC;BD Biosciences;551262;mouse;rat;monoclonal;MEC 13.3;FC;http://www.bdbiosciences.com/eu/applications/
research/stem-cell-research/cancer-research/mouse/apc-rat-anti-mouse-cd31-mec-133/p/551262 
18;CD31;APC;BioLegend;102510;mouse;rat;monoclonal;MEC 13.3;FC;https://www.biolegend.com/de-de/products/apc-anti-
mouse-cd31-antibody-375 
19;CD31;BV421;BD;562939;mouse;rat;monoclonal;MEC 13.3;FC;http://www.bdbiosciences.com/us/applications/research/stem-
cell-research/cancer-research/mouse/bv421-rat-anti-mouse-cd31-mec-133/p/562939 
20;CD31;FITC;BD Biosciences;561813;mouse;rat;monoclonal;MEC 13.3;FC;https://www.bdbiosciences.com/us/applications/
research/stem-cell-research/cancer-research/mouse/fitc-rat-anti-mouse-cd31-mec-133/p/561813 
21;CD31;FITC;Biolegend;102506;mouse;rat;monoclonal;MEC 13.3;FC;https://www.biolegend.com/de-de/products/fitc-anti-
mouse-cd31-antibody-377 
22;CD31;PE/Dazzle594;Biolegend;102526;mouse;rat;monoclonal;MEC 13.3;FC;https://www.biolegend.com/de-at/products/pe-
dazzle-594-anti-mouse-cd31-antibody-14322 
23;CD326;APC/Fire750;Biolegend;118230;mouse;rat;monoclonal;G8.8;FC;https://www.biolegend.com/en-us/products/apc-
fire-750-anti-mouse-cd326-ep-cam-antibody-13635 
24;CD326;PE/Cy7;Biolegend;118216;mouse;rat;monoclonal;G8.8;FC;https://www.biolegend.com/en-us/products/pe-cy7-anti-
mouse-cd326-ep-cam-antibody-5303 
25;CD34;AF647;BD Pharmingen;560230;mouse;rat;monoclonal;RAM34;FC;http://www.bdbiosciences.com/us/applications/
research/stem-cell-research/cancer-research/mouse/alexa-fluor-647-rat-anti-mouse-cd34-ram34/p/560230 
26;CD3;APC;Biolegend;100236;mouse;rat;monoclonal;17A2;FC;https://www.biolegend.com/en-us/products/apc-anti-mouse-
cd3-antibody-8055 
27;CD3;FITC;BioLegend;100203;mouse;rat;monoclonal;17A2;FC;https://www.biolegend.com/de-de/products/fitc-anti-mouse-
cd3-antibody-45 
28;CD44;APC;Biolegend;103012;mouse, human;rat;monoclonal;IM7;FC;https://www.biolegend.com/de-de/products/apc-anti-
mouse-human-cd44-antibody-312 
29;CD45;Pacific Blue;Biolegend;103126;mouse;rat;monoclonal;30-F11;FC;https://www.biolegend.com/de-de/products/pacific-
blue-anti-mouse-cd45-antibody-3102 
30;CD45;APC;Biolegend;103112;mouse;rat;monoclonal;30-F11;FC;https://www.biolegend.com/de-de/products/apc-anti-mouse-
cd45-antibody-97 
31;CD45;BV51;Biolegend;103138;mouse;rat;monoclonal;30-F11;FC;https://www.biolegend.com/de-de/products/brilliant-
violet-510-anti-mouse-cd45-antibody-7995 
32;CD45;FITC;BioLegend;103108;mouse;rat;monoclonal;30-F11;FC;https://www.biolegend.com/de-de/products/fitc-anti-
mouse-cd45-antibody-99 
33;CD45;PE;Biolegend;103106;mouse;rat;monoclonal;30-F11;FC;https://www.biolegend.com/de-de/products/pe-anti-mouse-
cd45-antibody-100 
34;CD45;PE/Cy7;eBioscience;25-0451-82;mouse;rat;monoclonal;30-F11;FC;https://www.thermofisher.com/antibody/product/
CD45-Antibody-clone-30-F11-Monoclonal/25-0451-81 
35;CD45R/B220;FITC;BioLegend;103206;mouse,human,cat;rat;monoclonal;  RA3-6B2;FC;https://www.biolegend.com/en-us/
products/fitc-anti-mouse-human-cd45r-b220-antibody-445 
36;CD49f ;APC;Biolegend;313616;Human, African Green, Mouse, Baboon, Capuchin Monkey, Cat (Feline), Cattle (Bovine, Cow), 
Chimpanzee, Cynomolgus, Dog (Canine), Horse (Equine), Rabbit (Lapine), Rhesus, Sheep (Ovine), Swine (Pig, 
Porcine);rat;monoclonal;GoH3;FC;https://www.biolegend.com/de-de/products/apc-anti-human-mouse-cd49f-antibody-5617 
37;CD66a;PE;Biolegend;134506;mouse;mouse;monoclonal;Mab-CC1;FC;https://www.biolegend.com/de-de/products/pe-anti-
mouse-cd66a-ceacam1a-antibody-5986 
38;CD90.2/Thy-1.2;APC/Cy7;Biolegend;105328;mouse;rat;monoclonal;30-H12;FC;https://www.biolegend.com/de-de/products/
apc-cy7-anti-mouse-cd90-2-antibody-6671 
39;CD90.2/Thy-1.1;AF488;BioLegend;202506;Rat, Mouse (AKR/J, PL, and FVBIN mouse strains), Cross-Reactivity: Rabbit (Lapine), 
Guinea Pig;mouse;monoclonal;  OX-7 ;FC;https://www.biolegend.com/de-de/products/alexa-fluor-488-anti-rat-cd90-mouse-
cd90-1-thy-1-1-antibody-3126 
40;CD90.2/Thy-1.2;FITC;BioLegend;140304;mouse;rat;monoclonal;  53-2.1;FC;https://www.biolegend.com/de-de/products/fitc-
anti-mouse-cd90-2-thy-1-2-antibody-6761 
41;C-FMS ;BV411;Biolegend;135513;mouse;rat;monoclonal;AFS98;FC;https://www.biolegend.com/de-de/products/brilliant-
violet-421-anti-mouse-cd115-csf-1r-antibody-8971 
42;CKIT ;APC;BioLegend;105812;mouse;rat;monoclonal;  2B8;FC;https://www.biolegend.com/de-de/products/apc-anti-mouse-
cd117-c-kit-antibody-72 
43;endomucin;FITC;eBioscience ;14-5851-82;mouse;rat;monoclonal;V.7C7;FC, IHC, IP, WB;https://www.thermofisher.com/
antibody/product/Endomucin-Antibody-clone-eBioV-7C7-V-7C7-Monoclonal/14-5851-81 
44;EpCAM;APC;ThermoFisher;17-5791-82;mouse;rat;monoclonal;G8.8;FC, IHC, IP, WB;https://www.thermofisher.com/antibody/
product/CD326-EpCAM-Antibody-clone-G8-8-Monoclonal/17-5791-80 
45;EpCAM;FITC;eBioscience;11-5791-82;mouse;rat;monoclonal;G8.8;FC, IHC, IP, WB;https://www.thermofisher.com/antibody/
product/CD326-EpCAM-Antibody-clone-G8-8-Monoclonal/11-5791-80 
46;TER119;Pacific Blue;Biolegend;116232;mouse;rat;monoclonal;TEr-119;FC;https://www.biolegend.com/de-de/products/
pacific-blue-anti-mouse-ter-119-erythroid-cells-antibody-6137 
47;IgM;PE/Cy7;BioLegend;406514;mouse;rat;monoclonal;  RMM-1;FC;https://www.biolegend.com/de-de/products/pe-cy7-anti-
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mouse-igm-6935 
48;CD49f;FITC;BioLegend;313606;Human, African Green, Mouse, Baboon, Capuchin Monkey, Cat (Feline), Cattle (Bovine, Cow), 
Chimpanzee, Cynomolgus, Dog (Canine), Horse (Equine), Rabbit (Lapine), Rhesus, Sheep (Ovine), Swine (Pig, 
Porcine);rat;monoclonal;GoH3;FC;https://www.biolegend.com/de-de/products/fitc-anti-human-mouse-cd49f-antibody-2606 
49;LNGFR;Vio770;Miltenyi;103110079;mouse,monkey,goat,dog,pig,sheep;mouse;monoclonal;ME20.4-1.H4;FC, IF;https://
www.miltenyibiotec.com/US-en/products/macs-flow-cytometry/antibodies/primary-antibodies/cd271-lngfr-antibodies-human-
me20-4-1-h4-1-11.html/ 
50;Ly-6A/E;Pacific Blue;BioLegend;108120;mouse;rat;monoclonal;D7;FC;https://www.biolegend.com/de-de/products/pacific-
blue-anti-mouse-ly-6a-e-sca-1-antibody-3140 
51;Ly-6G/Ly-6C/GR1;FITC;BioLegend;108405;mouse;rat;monoclonal;  RB6-8C5;FC;https://www.biolegend.com/de-de/products/
fitc-anti-mouse-ly-6g-ly-6c-gr-1-antibody-458 
52;Ly-6G/Ly-6C/GR1;PE/Cy7;BioLegend;108416;mouse;rat;monoclonal;  RB6-8C5;FC;https://www.biolegend.com/de-de/
products/pe-cy7-anti-mouse-ly-6g-ly-6c-gr-1-antibody-1931 
53;CD326;PE/Cy7;Biolegend;118216;mouse;rat;monoclonal;G8.8;FC;https://www.biolegend.com/de-de/products/pe-cy7-anti-
mouse-cd326-ep-cam-antibody-5303 
54;CD44;APC;Biolegend;103012;mouse, human;rat;monoclonal;IM7;FC;https://www.biolegend.com/de-de/products/apc-anti-
mouse-human-cd44-antibody-312 
55;CD45;Pacific Blue;Biolegend;103126;mouse;rat;monoclonal;30-F11;FC;https://www.biolegend.com/de-de/products/pacific-
blue-anti-mouse-cd45-antibody-3102 
56;CD66a;PE;Biolegend;134506;mouse;mouse;monoclonal;Mab-CC1;FC;https://www.biolegend.com/de-de/products/pe-anti-
mouse-cd66a-ceacam1a-antibody-5986 
57;O4;PE;Miltenyi;130-095-887;humam,mouse,rat;mouse;monoclonal;O4;FC, IF;https://www.miltenyibiotec.com/US-en/
products/macs-flow-cytometry/antibodies/primary-antibodies/anti-o4-antibodies-human-mouse-rat-o4-1-11.html 
58;SCA1;APC;Biolegend;122512;mouse;rat;monoclonal;E13-161.7;FC;https://www.biolegend.com/en-us/products/apc-anti-
mouse-ly-6a-e-sca-1-antibody-3897 
59;SCA1;FITC;Biolegend;122506;mouse;rat;monoclonal;E13-161.7;FC;https://www.biolegend.com/en-us/products/fitc-anti-
mouse-ly-6a-e-sca-1-antibody-3894 
60;SCA1;Pacific Blue;Biolegend;108120;mouse;rat;monoclonal;E13-161.7;FC;https://www.biolegend.com/pacific-blue-anti-
mouse-ly-6a-e-sca-1-antibody-3140.html 
61;SCA1;PE/Cy7;BioLegend;122514;mouse;rat;monoclonal;E13-161.7;FC;https://www.biolegend.com/pe-cy7-anti-mouse-ly-6a-
e-sca-1-antibody-3898.html 
62;SDC4;APC;Miltenyi;130-109-831;mouse;rat;monoclonal;REA640;FC, IF;https://www.miltenyibiotec.com/US-en/products/
macs-flow-cytometry/antibodies/primary-antibodies/anti-syndecan-4-antibodies-mouse-rea640-1-10.html/ 
63;TER119;FITC;BioLegend;116205;mouse;rat;monoclonal;TER-119;FC;https://www.biolegend.com/en-us/products/fitc-anti-
mouse-ter-119-erythroid-cells-antibody-1865 
64;TER119;PE/Cy5;BioLegend;116210;mouse;rat;monoclonal;TER-119;FC;https://www.biolegend.com/en-us/products/pe-cy5-
anti-mouse-ter-119-erythroid-cells-antibody-1868 
65;Thbs1;APC;Fisher;MA5-13398;Bovine, Dog, Horse, Human, Mouse, Sheep, Pig, Rat;mouse;monoclonal;A6.1;FC, IHC, IF, IP, 
WB;https://www.thermofisher.com/antibody/product/Thrombospondin-1-Antibody-clone-A6-1-Monoclonal/MA5-13398 
66;Tmem119 ;AF488;Abcam;ab210405;mouse;rabbit;monoclonal;106-6;FC;http://www.abcam.com/tmem119-antibody-106-6-
microglial-marker-ab210405.html 
67;VCAM;PE/Cy7;Biolegend;105720;mouse;rat;monoclonal;MVCAM.A;FC;https://www.biolegend.com/en-us/products/pe-cy7-
anti-mouse-cd106-antibody-6135 

Validation 8F�SFMJFE�PO�WBMJEBUJPO�QSPWJEFE�CZ�UIF�NBOVGBDUVSFS�PG�FBDI�BOUJCPEZ��"MM�BOUJCPEJFT�XFSF��VTFE�BDDPSEJOH�UP�UIF�NBOVGBDUVSFST�
TQFDJGJDBUJPOT�BOE�SFDPNNFOEFE�EJMVUJPOT���'PS�NPSF�JOGPSNBUJPO�QMFBTF�SFGFS�UP�UIF�MJOLT�QSPWJEFE�GPS�FBDI�BOUJCPEZ�

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals C57J/B6 mice, male and female, with ages 1m, 3m, 12m, 18m, 21m, 24m and 30m

Wild animals The study did not involve wild anumals

Field-collected samples The study did not involve field-collected samples

Ethics oversight�
Note that full information on the approval of the study protocol must also be 

provided in the manuscript.

Flow CytometryPlots
Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

"MM�BOJNBM�DBSF�BOE�QSPDFEVSFT�XFSF�DBSSJFE�PVU�JO�BDDPSEBODF�XJUI�JOTUJUVUJPOBM�HVJEFMJOFT�BQQSPWFE�CZ�UIF�7"�1BMP�"MUP�
$PNNJUUFF�PO�"OJNBM�3FTFBSDI�
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Methodology

Sample preparation Please see the supplemental text for extensive details regarding each organ.

Instrument Sony SH800S for all organs except limb muscle and diaphragm, which were sorted on a BD Aria III.

Software BD FACS Diva and the default SH800S software were used to collect data.

Cell population abundance Please see the supplemental text for extensive details regarding each organ.

Gating strategy Please see the index data for each organ.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.


